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Fully non linear equations arise in optimal control and gane®ry.

A typical problem would be:
Under Dirichlet boundary data find a functiorsuch that

supL,u=0

with L, a family of constant coefficient operators.



For instance
> 1
F(D“u) = max ux,<+uyy,§uxx+2uyy =0

or
F(D%u) = supa;Djju= 0
acA

where
A = {matrices with eigenvalues between 1 and

This is the Pucci extremal operator, amdan be described as

D AN+LY N=0

Aj<0 A >0

satisfying



A variable Pucci operator would be, for instance
D A+LX Y N=0
Aj<0 A>0

For the homogenization setting, we will have a “family of rzed
L. (x) that appear with some frequency”, iee.€ M a probability
space (a family of equatiorfs(D?u, x, w)).



The different equations have the same frequency no matterenvhe

stand:

I
Il
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(For any integer translatioy) there is a measure preserving

transformationr, such that
F(D%u,x +Y,w) = F(D?U, X, 7y(w))



But they mix:

(If p(A) <1,

p(N 1y A) — 0
Yk

as the translationg cover the space.)

il



Homogenization theorem

If you look from further away, all equations become the same:
The solutionsy. of F(D?u., g, w) converge to the solutiony of

F(D%u) =0

where there is no dependencexaanymore.



Rates of convergence

The question you ask next is: Are there circumstances untethw
we could estimate the rate of convergence ofithto uy?

l.e., givend, can we say that for a#(é) predictedu. (X, w) would be
0 away fromug, except for a set ab’s of measure)?



This could happen only W(ygy 7y(A)) would go to zero at some fast
0
rate agyp covers the space.

If the operators do not mix, i.e., it takes a lot of time for tiees and
the reds to mix, there will be, at large scales, solutionsoofy blues”
and of “only reds”.

On the other hand, if blues and reds mix at a consistent frate, t
picture will become “uniformly purple”, i.e., we hope to belato
estimate, for a given small (epsilon) scale, how many smhstiare
close to the homogenization limit.
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That would happen, for instance if the distributionsu.d at yx andy,
are independent: (a checkerboard)

In that case
(N 7y By) Hu Bj)"

A more relaxed hypothesis will be “correlation decay”.



11




12

Theorem (C-Souganidis))

If the rate of decay is 3K for r = 3¢ the rate of convergence is also
3Kfor e = 3%,

Note that the rate of convergence is very slow, but also tteeafa
decay of correlations is very slow.

This seems to happen because the diffusion process of anfully
linear equation may be much slower than a linear one (witlsteon
coefficients).
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Main facts needed for the method

1) Solutions and differences of solutions to a FNL equatioisat
an “elliptic equation’ with bounded measurable coefficsént

0 = F(D%u;,x) — F(D%up,x) =
= Fjj(M,x) -D?(uy, up)
N—_——

The derivative of at an intermediate matrix

In particular, for such solutions we have
a) Harnack inequality and interi@2® (Krylov-Safanov)
b) ABP
c) Fabes-Strook



14

ABP If Lu=f, andu<0o0noB;
supu < C||f [|Ln
By
Fabes-Strook (A converse to ABP)
If Lu=f <0, andu>0 on 0B;

1-M i (M
u> ([l IFlltn - on Byyp

Remark

Technically, the slow rate of convergence we obtains seemsathe
different homogeneities between ABP and Fabes-Strookeabov
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Theaobstacle problem:  Given an operatok; (with a comparison
principle) and an “obstacle” (for us a polynomRj in a domainD
(for us a cube or a ball), we will consider the functiorthe smallest
supersolution of.v < 0, among thos&'s aboveP (Perron’s method).
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Properties:

a) If L has the Harnack inequality angxo) = P(Xo)
(u=P)(x) < Clx—x?

(Quadratic detachment)

b) Lu= L(P)xu=p = bounded and negative
(no distribution across interphase)

c) If Lv=0,v=PondD,

O<u-v< CHLUHLn = ||LPXu:p|||_n < C|{U = P}|
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a) and b)

P() + C il
u(x)
P(x)
u(0) = P(0)
a) Quadratic separation at every seal implies

b) F(D?u) carriesno distribution on

{u=P} =0A (so Lu=LPyy=p)
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c) The mass of the contact set controls the separation between
and the “free solutionV:

P—v<u—v<|LPyuyp|lr < C|{u=P}|
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Proof of existence of effective equation and homogenindimit:

1) How to guess the limiting equation?
(viscosity solution method)

A uniformly elliptic equation
F(D?u)

is simply a functionF(M) in the space of matrices, monotone in a
cone of directions around the identity:
(f Nt > N-,F(M+N) > F(M).)
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In particular,F(M) = O is a Lipschitz surfacg  in R"™" and a way
to determine it would be to “list” all matrices above and lvelp’,
i.e., all quadratic polynomials that are “sub” or “superfugimns of
F(D?P) = 0.

(To define the Lapalacian, | would need a “long” list of all sarxl
super harmonic polynomials.)
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Once you know this “list” of polynomials, a continuous fuiact u(x)
is defined to be a “viscosity solution” of the equatiBfD?u) = 0 if
no “sub polynomial” may touch it (locally) by below and no fser
polynomial” by above.

super-polynomial
(“too concave™)

u(x)

sub-polynomial
(“too convex’’)
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(A continuous function would be declared “harmonic” if no
subharmonic polynomial could locally touch it by below nor
superharmonic by above. Note that no “touching by a polyadhait
any particular point is required.)

The remarkable fact is that such function is the unique, gilae as
possible solution oF (D?u) = 0.

Therefore, in order to find the effective equation and homaggion
limit our main problem is to decide, give a quadratic polymalP, if
it is going to be a sub- or super-solution of the effectiveagiun.

That means the following:
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We fix P, and start to solve, far; > 5 > e3- -+, V. solution of
F(Dzvg,x/s, ---)=0.

If a.s. inw, v. becomes bigger thad, we declard? a subsolution of
F(D?).

If smaller,P should be aupersolution. (P can touchv. by above,
resp. by below.)

If neither happensio homogenization.
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So we switch to the solution. of the obstacle problem, and instead
of studying the behavior ai. in the unit ball, we rescale b%/ sSo we
work with a fixed equatiofr (D?u, x,w) in a large(By /. ) domain.

This has the advantage of
a) Compare successive solutions (in larger and larger domains

b) The measure of the contact set or total mads bécome
subadditive quantities.
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Uy is in D1 an admissible supersolution, and bigger thgntheleast
supersolution.

P
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Uy > I/lj

by

construction
it =P }I < {u; = P}

M(Qy.w) = Hug =P}  is subadditive

us

uj Uy

(replaces the Birkhoff property)
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Ap(Q, w) is a subadditive translation invariant quantity

AMQ(X+Yy,w) = AMQ(X, yw))

and then,
A(Qr,w) .
Ao (a constant, a.s. i
Qe om0 )
=0
Two cases
Ao > 0
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If \op = 0, and we rescal®g back toQ; (andutou, (¢ = F1{))

AMQr, )
QR
So\g = 0 means that{u. = P}| — O.

becomes|{u. = P}| in Q1

Then|v. — u.| — 0 andv. alignsabove P.

P should be a subsolution.
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If \o > 0: P must be a supersolution &f

uj= P}l
IQjI

{uJ':P} as k —> o —> h>0

I, Portions of ug = P,
7 {ug =P} cu {uj=P}
but,as k — oo ,also
{ug = P}l
1054l
That forces {uq = P} to spread
all over. From the quadratic
separation at every scale,
v < Patthe ¢&=0 limit.

—> h>0
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Note that implicit in the proof we construct approximaterectors to
the polynomials.

At this point the existence of a homogenization limit is tgb
viscosity solution methods:

We look at an “essential inf” (“sup”) i of the limiting u. and show
that they are “super” and “sub” solutions I6f
Since the super is below the sub, they must be equal.
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Rate of convergence

Let us start by pointing out that we may, starting from a polwinal

Po continuously change the polynomial B = Po -+ t(|x|2 — 1) and
see what happens with(P;) and \o both for the upper obstacle (least
supersolution abovi; or lower obstacle (upper subsolution below

Py).
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subsolutions
to F

supersolutions
to F

A

Y

Increasing ¢
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Furthermore, asseparates from zero we hail — Po)v C t and
thusP; also separates from the approximate correctgfsolutions of
F(D?v., ¥)) that are converging tBo.

Then foru! the solution to thé®; obstacle problem (from above for
negative, from below fot positive) ut — v.| > t"a.s. as — 0.
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Therefore, from A-B-P theorem
“ul =P} >t a.s.ase —0

That is:
the ergodic limitAJ *~ > t"

i.e., we have

A o
A 4

| o/

growth of at least "
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In fact, since the process was subadditive for a fixeitie expectation
E. of
t 2, X
it =Py| (orof /F(D 0))

is bigger tham\o(P).
/ Eg
e
//
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In fact, the rate of convergence wfto P is clearly related to how fast
the \* (w) converges to zero in their respective intervals since each
one of them quantifies, from the A-B-P theorem how close i® P
from either side.

If we go back to the picture that describes the cagse- 0, and we
assume, for simplicity, independence of the distributiondisjoint
large squares:
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Twoscales Mo=2k My =24, Kk > k.

e Green “blurb”, contact set for

M4, contained in the union of
small blue blurbs, corresponding ]
to the %0 cubes. The mass ofthe | |
“Green blurb” foru; or uy’
controls by below(u; — u;)
(Fabes-Srook).

e Blue “blurbs” being
independent are “well spread”,
and many blue blurbs far] and
Uy Will be non empty in the same
cube.
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If we adjust the relation betwedqg andk; properly (so that®® is tiny
with respect to ) and the mass of the green blurb is not too small
with respect to the large cube (of siz&)2we have that:

Fabes-Strook versus quadratic separation impliesuthati; cannot
both touch the samé@cube.

In particular, when passing from the union of the blue bludithe
green blurb, a fraction of the mass will be “wipped out” (tbasibes
with overlapping masses).
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The different homogeneities of ABP and Fabes-Strook fagce Ck3
for a geometric decay on the mass and the correspondingfrate o
convergence.



